V = 2226.41 (13) Å³

T = 173 (2) K $0.08 \times 0.07 \times 0.01$ mm

Z = 4Mo $K\alpha$ radiation $\mu = 3.77 \text{ mm}^{-1}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diiodidobis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II)

Ming-Lei Cao,^{a,b} Xin Fang,^{a,b} Hai-Yang Yu^{a,b} and Jun-Dong Wang^{a,b}*

^aDepartment of Chemistry, University of Fuzhou, Fuzhou 350002, People's Republic of China, and ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou 350002, People's Republic of China Correspondence e-mail: wangjd@fzu.edu.cn

Received 24 April 2007; accepted 14 June 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.014 Å; *R* factor = 0.045; *wR* factor = 0.144; data-to-parameter ratio = 17.1.

The title compound, $[CdI_2(C_{12}H_8N_2)_2]$, consists of two 1,10phenanthroline (phen) ligands, two I atoms and one Cd atom. The coordination geometry around the Cd atom, which lies on a twofold rotation axis, is slightly distorted octahedral. In the crystal structure, the dihedral angle between the two phen ligands is 89.03 (5)°. The crystal packing is stabilized by intermolecular π - π interactions of phen rings, with a parallel distance of 3.362 Å, a centroid–centroid distance of 3.903 Å and a slip distance of 1.983 Å, and C–H···I hydrogen bonding [I···H = 3.091 and 2.990 Å].

Related literature

For related literature, see: Bowmaker *et al.* (1973); Boys (1988); Boys *et al.* (1981); Healy *et al.* (1985); Pallenberg *et al.* (1995); Wicholas & Wolford (1974); Yang *et al.* (2004).

Experimental

Crystal data

CdI2(C12H2N2)2]
$M_r = 726.61$
Orthorhombic, Pbcn
a = 13.4833 (5) Å
p = 9.5244 (3) Å
= 17.3385 (5) Å

Data collection

Rigaku R-AXIS SPIDER	201
diffractometer	255
Absorption correction: multi-scan	178
(ABSCOR; Higashi, 1995)	$R_{\rm ir}$
$T_{\min} = 0.664, \ T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$
$wR(F^2) = 0.144$
S = 1.15
2554 reflections
149 parameters

20141 measured reflections 2554 independent reflections 1786 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$

Only H-atom displacement parameters refined
$$\begin{split} &\Delta\rho_{\rm max} = 1.84 \mbox{ e } {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -2.73 \mbox{ e } {\rm \AA}^{-3} \end{split}$$

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEX* (McArdle, 1996); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Foundations of Fujian Province (No. 2006 F5058) and Fuzhou University (No. XRC-0527).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2059).

References

- Bowmaker, G. A., Brockliss, L. D. & Whiting, R. (1973). Aust. J. Chem. 26, 29–42.
- Boys, D. (1988). Acta Cryst. C44, 1539-1541.
- Boys, D., Escobar, C. & Martínez-Carrera, S. (1981). Acta Cryst. B37, 351–355.
 Healy, P. C., Engelhardt, L. M., Patrick, V. A. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2541–2545.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- McArdle, P. (1996). ORTEX5. UCG Crystallography Centre, University College Galway, Ireland.
- Pallenberg, A. J., Koenig, K. S. & Barnhart, D. M. (1995). Inorg. Chem. 34, 2833–2840.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wicholas, M. & Wolford, T. (1974). Inorg. Chem. 13, 316-318.
- Yang, H.-F., Huang, C.-C., Zhang, H.-H., Liu, Y., Lian, Z.-X. & Xiao, G.-C. (2004). Acta Cryst. E60, m291–m293.

supplementary materials

Acta Cryst. (2007). E63, m1951 [doi:10.1107/S1600536807029145]

Diiodidobis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II)

M.-L. Cao, X. Fang, H.-Y. Yu and J.-D. Wang

Comment

The title compound, (I), is a complex with organic and inorganic ligands, which can be used as a catalyst in chemical and biochemical reactions (Boys *et al.* 1988).

The molecular structure of (I) is shown in Fig. 1. Four N atoms from phen and two I atoms form a distorted octahedron arrangement around the Cd atom. The dihedral angle between the two phen rings of one molecule is 89.03 (5)°. The angles of the axial and equatorial I—Cd—N bonds are different at 161.72 (17) and 90.13 (17), respectively.

In the crystal structure of (I), the crystal packing is stabilized by intermolecular p-p stacking interactions, with the distances between phen rings centroids of 3.362A, 3.903A, and a slip distance of 1.983A. There are also weak I–H secondary interactions with distances of 3.091A for I(1)–H(16 A) and 2.990A for I(1)–H(9 A).

Experimental

The title compound was prepared by the slow addition of CdI $\sim 2\sim$ (0.0183 g, 0.05 mmol) and phen (0.018 g, 0.1 mmol) to 10 ml DMF, stirred for 30 min. The solution was filtered, after the solvent was slowly evaporated at room temperature, colorless crystals was obtained.

Figures

Fig. 1. A view of the molecular structure of (I), with displacement ellipsoids drawn at the 50% probabilty level for non-H atoms.

Diiodidobis(1,10-phenanthroline- $\kappa^2 N$, N')cadmium(II)

Crystal auta
$[CdI_2(C_{12}H_8N_2)_2]$
$M_r = 726.61$
Orthorhombic, Pbcn
Hall symbol: -P2n2ab
<i>a</i> = 13.4833 (5) Å
<i>b</i> = 9.5244 (3) Å
c = 17.3385(5) Å

Curvetal data

 $F_{000} = 1368$ $D_x = 2.168 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71069 \text{ Å}$ Cell parameters from 12645 reflections $\theta = 6.0-55.0^{\circ}$ $\mu = 3.77 \text{ mm}^{-1}$ T = 173 (2) K

V = 2226.41	(13) $Å^{3}$
Z = 4	

Data collection

Rigaku R-AXIS SPIDER diffractometer	2554 independent reflections
Radiation source: fine-focus sealed tube	1786 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.067$
Detector resolution: 10 pixels mm ⁻¹	$\theta_{max} = 27.5^{\circ}$
T = 173(2) K	$\theta_{\min} = 3.0^{\circ}$
ω oscillation scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -11 \rightarrow 12$
$T_{\min} = 0.664, \ T_{\max} = 1.000$	<i>l</i> = −22→22
20141 measured reflections	

Block, colorless $0.08 \times 0.07 \times 0.01 \text{ mm}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	Only H-atom displacement parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_0^2) + (0.0462P)^2 + 27.7932P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.144$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.15	$\Delta \rho_{max} = 1.84 \text{ e } \text{\AA}^{-3}$
2554 reflections	$\Delta \rho_{\rm min} = -2.73 \text{ e } \text{\AA}^{-3}$
149 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0013 (2)

methods

Secondary atom site location: difference Fourier map

х

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

 $U_{iso}*/U_{eq}$ y \boldsymbol{z}

I1	0.58713 (4)	0.08128 (7)	0.85926 (4)	0.0384 (2)
Cd1	0.5000	0.27221 (10)	0.7500	0.0314 (3)
N1	0.6549 (5)	0.3396 (8)	0.6981 (4)	0.0325 (16)
N2	0.4792 (5)	0.4653 (8)	0.6587 (4)	0.0314 (16)
C4	0.7434 (7)	0.4817 (10)	0.6051 (5)	0.037 (2)
C5	0.6541 (6)	0.4377 (10)	0.6418 (5)	0.035 (2)
C6	0.7409 (7)	0.2878 (11)	0.7207 (5)	0.039 (2)
H6A	0.7406	0.2197	0.7591	0.050*
C7	0.8321 (7)	0.3292 (12)	0.6905 (6)	0.045 (3)
H7A	0.8913	0.2940	0.7101	0.04 (3)*
C8	0.7383 (8)	0.5822 (11)	0.5438 (6)	0.047 (3)
H8A	0.7956	0.6042	0.5165	0.06 (4)*
C9	0.8314 (7)	0.4227 (11)	0.6314 (6)	0.045 (3)
H9A	0.8909	0.4477	0.6081	0.04 (3)*
C11	0.5627 (7)	0.6104 (10)	0.5635 (5)	0.037 (2)
C13	0.3902 (8)	0.6415 (11)	0.5886 (6)	0.043 (2)
H13A	0.3304	0.6874	0.5799	0.06 (3)*
C14	0.3957 (7)	0.5325 (12)	0.6420 (6)	0.041 (2)
H14A	0.3379	0.5055	0.6672	0.05 (3)*
C15	0.5633 (6)	0.5036 (11)	0.6210 (5)	0.034 (2)
C16	0.6540 (8)	0.6442 (11)	0.5252 (6)	0.048 (3)
H16A	0.6538	0.7115	0.4863	0.06 (4)*
C17	0.4733 (8)	0.6804 (11)	0.5493 (6)	0.045 (2)
H17A	0.4705	0.7527	0.5133	0.06 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0315 (3)	0.0445 (4)	0.0391 (4)	-0.0002 (3)	-0.0038 (3)	0.0038 (3)
Cd1	0.0224 (4)	0.0394 (5)	0.0323 (5)	0.000	0.0013 (4)	0.000
N1	0.025 (4)	0.044 (4)	0.028 (4)	0.001 (3)	0.003 (3)	0.002 (3)
N2	0.030 (4)	0.034 (4)	0.030 (4)	0.007 (3)	-0.002 (3)	0.001 (3)
C4	0.028 (4)	0.041 (5)	0.041 (5)	-0.012 (4)	0.012 (4)	-0.012 (4)
C5	0.027 (4)	0.043 (5)	0.033 (5)	-0.006 (4)	0.001 (4)	-0.008 (4)
C6	0.030 (4)	0.049 (6)	0.037 (5)	0.003 (4)	0.002 (4)	-0.004 (4)
C7	0.023 (4)	0.065 (7)	0.047 (6)	0.008 (4)	-0.001 (4)	-0.021 (5)
C8	0.043 (6)	0.051 (6)	0.046 (6)	-0.013 (5)	0.018 (5)	-0.003 (5)
C9	0.028 (5)	0.060 (7)	0.049 (6)	-0.017 (5)	0.008 (4)	-0.019 (5)
C11	0.041 (5)	0.041 (5)	0.028 (5)	-0.004 (4)	0.003 (4)	0.002 (4)
C13	0.045 (6)	0.040 (5)	0.044 (6)	0.009 (4)	-0.004 (5)	0.015 (5)
C14	0.028 (4)	0.061 (6)	0.036 (5)	-0.008 (4)	0.001 (4)	0.000 (5)
C15	0.028 (4)	0.046 (5)	0.029 (5)	-0.017 (4)	0.002 (3)	-0.007 (4)
C16	0.058 (7)	0.045 (6)	0.041 (6)	-0.005 (5)	0.011 (5)	0.001 (5)
C17	0.051 (6)	0.044 (6)	0.041 (6)	-0.007 (5)	-0.005 (5)	0.007 (5)

Geometric parameters (Å, °)

I1—Cd1	2.8766 (9)	С6—Н6А	0.9300
Cd1—N1	2.362 (7)	С7—С9	1.357 (15)

supplementary materials

Cd1—N1 ⁱ	2.362 (7)	C7—H7A	0.9300
Cd1—N2 ⁱ	2.442 (7)	C8—C16	1.321 (15)
Cd1—N2	2.442 (7)	C8—H8A	0.9300
Cd1—I1 ⁱ	2.8766 (9)	С9—Н9А	0.9300
N1—C6	1.319 (12)	C11—C17	1.400 (14)
N1—C5	1.351 (12)	C11—C15	1.425 (13)
N2—C14	1.327 (12)	C11—C16	1.435 (14)
N2—C15	1.358 (11)	C13—C17	1.362 (14)
C4—C9	1.390 (15)	C13—C14	1.393 (14)
C4—C5	1.424 (12)	C13—H13A	0.9300
C4—C8	1.432 (14)	C14—H14A	0.9300
C5—C15	1.423 (13)	C16—H16A	0.9300
C6—C7	1.394 (14)	C17—H17A	0.9300
N1—Cd1—N1 ⁱ	148.5 (4)	С7—С6—Н6А	118.0
N1—Cd1—N2 ⁱ	86.6 (3)	C9—C7—C6	117.6 (9)
N1 ⁱ —Cd1—N2 ⁱ	69.5 (3)	С9—С7—Н7А	121.2
N1—Cd1—N2	69.5 (2)	С6—С7—Н7А	121.2
N1 ⁱ —Cd1—N2	86.6 (3)	C16—C8—C4	121.5 (9)
N2 ⁱ —Cd1—N2	82.3 (3)	С16—С8—Н8А	119.3
N1—Cd1—I1 ⁱ	106.37 (18)	C4—C8—H8A	119.3
N1 ⁱ —Cd1—I1 ⁱ	93.52 (18)	C7—C9—C4	121.2 (9)
N2 ⁱ —Cd1—I1 ⁱ	161.72 (17)	С7—С9—Н9А	119.4
N2—Cd1—I1 ⁱ	90.13 (17)	С4—С9—Н9А	119.4
N1—Cd1—I1	93.52 (18)	C17—C11—C15	117.9 (9)
N1 ⁱ —Cd1—I1	106.37 (18)	C17—C11—C16	123.4 (9)
N2 ⁱ —Cd1—I1	90.13 (17)	C15—C11—C16	118.7 (9)
N2—Cd1—I1	161.72 (17)	C17—C13—C14	119.4 (9)
I1 ⁱ —Cd1—I1	101.59 (4)	C17—C13—H13A	120.3
C6—N1—C5	118.6 (8)	C14—C13—H13A	120.3
C6—N1—Cd1	124.2 (6)	N2-C14-C13	123.4 (9)
C5—N1—Cd1	117.1 (6)	N2—C14—H14A	118.3
C14—N2—C15	118.2 (8)	C13—C14—H14A	118.3
C14—N2—Cd1	127.0 (6)	N2—C15—C5	118.5 (8)
C15—N2—Cd1	114.7 (6)	N2-C15-C11	121.6 (9)
C9—C4—C5	117.1 (9)	C5—C15—C11	119.8 (8)
C9—C4—C8	123.7 (9)	C8—C16—C11	121.6 (10)
C5—C4—C8	119.2 (9)	C8—C16—H16A	119.2
N1—C5—C15	119.6 (8)	C11—C16—H16A	119.2
N1—C5—C4	121.3 (9)	C13—C17—C11	119.4 (9)
C15—C5—C4	119.0 (9)	С13—С17—Н17А	120.3
N1—C6—C7	124.0 (10)	C11—C17—H17A	120.3
N1—C6—H6A	118.0		

Symmetry codes: (i) -x+1, y, -z+3/2.

